
C# Optimizely (Episerver)

ALLAN THRAEN | 6 years ago | PDF |b d

GOOD OL' DYNAMIC
PROPERTIES

There was a time, when men were made of steel, ships made of wood, Episerver was spelled
with a weird capitalization and the CMS had something called Dynamic Properties that was
usually misused. They've been gone for a while, but I miss them, so here's yet another attempt
at solving the property inheritance challenge.

To those of you, my dear readers, that have no clue what Dynamic Properties were all about, let me begin
with enlightening you:

Once upon a time, there was a mythical feature, loved by some and hated by many called Dynamic
Propeties. Dynamic Properties were properties that were not set on the content itself, but rather could be
inherited across all content types, throughout the content hierachy. A good example would be a dynamic
property called something like "SecondLevelMenuRoot" that would be used to know which child objects
should be listed in the sidebar menu. Usually, a super-user editor that could find his/her way into the
secret edit menu for dynamic properties would then set the property to the each of the first level items.
That way, the property would inherit down and all leaf nodes would show the second level menu
corresponding to their place. And the world was a better place.

Sadly, evil forced tended to abuse these great powers and often ended up making many, many dynamic
properties and use them for stuff like a LogoImageLink or SearchButtonText that really should have been
a site setting instead. Since Dynamic properties had to be resolved dynamically (hence the name) that
tended to slow down the sites quite a bit.

But, surely we are smarter now and ready to once again unleash this power, right?

In any case, I needed some inheritance badly when building this blog. Why?

Well, here is a good use-case: On each blog post I have a sidebar content area. Usually I'll have the same
blocks there on all blocks - but there'll probably one or two where I'll want something different placed
there. I don't want to have to remember to put the same blocks in there for every single blog post. And I
don't want it as 'Default' value upon creation, cause what happens when I decide to change the blocks?

I could perhaps make 1 giant Block to rule all blocks, that would contain another content area with the
other blocks....But blocks-in-blocks are kind of ugly in my eyes and should be avoided whenever possible
(yes I know, I've done blocks in blocks both with Forms and Self Optimizing Block - but those were
exceptions, ok).

Enough talk, let's see some code. I decided that one of the best approaches would be if we could let the
developers decide which properties should be inherited and how it should work. Something like this:

//Sidebar

[Inherit(InheritIfNullOrEmpty =true, ParentPropertyToInheritFrom ="DefaultChildSideBar", SearchAllAncestors =true)

public virtual ContentArea SideBar { get; set; }

What's happening here is basically just that on my Blog Post content type, I'm telling it that this property
value should be inherited, if it's not set (null or empty). It should try to inherit from the parent page, if the
parent page has a property called "DefaultChildSideBar". If I hadn't specified that, it would simply look for
a parent property of the same name as the current property. I also tell it to search all ancestors - so if the
parent doesn't have that property set, it should look to the grandparent and so on.

Sometimes you might like to let the editor decide if a value should be inherited or not - in that case, you
could add another boolean property on the page and specify it's name as "SwitchPropertyName" in the
attribute.

I haven't yet decided on a good strategy for when to populate the properties - so for now, I've let it be up to
the developers - they basically have to call an extension method on IContent that will attempt to populate
the needed inherited properties.

public static T PopulateInheritedProperties<T>(this T Content) where T : PageData

 {

 var rt = (Content as IReadOnly).CreateWritableClone() as PageData;

 var props = Content.GetPropertiesWithAttribute(typeof(InheritAttribute));

 bool modified = false;

 foreach (var prop in props)

 {

 var attr = prop.GetCustomAttribute<InheritAttribute>(true);

 if (

 (!String.IsNullOrEmpty(attr.SwitchPropertyName) && ((bool)Content.GetType().GetProperty(attr.SwitchPropertyName).GetValue(Content))) ||

 ((attr.InheritIfNull || attr.InheritIfNullOrEmpty) && (prop.GetValue(Content) == null

 (attr.InheritIfNullOrEmpty && ((prop.PropertyType == typeof(ContentArea)) && (prop.GetValue(Content)

)

 {

 //Resolve Inherited Properties

 var repo = ServiceLocator.Current.GetInstance<IContentRepository>();

 foreach(var a in repo.GetAncestors(Content.ContentLink).Take((attr.SearchAllAncestors)?

 {

 G E T I N T O U C HBLOG CASES EXPERTISE ABOUT US CONTACT EN DA g

https://www.codeart.dk/
https://www.codeart.dk/blog/
https://www.codeart.dk/cases/
https://www.codeart.dk/expertise/
https://www.codeart.dk/about/
https://www.codeart.dk/contact/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/
https://www.codeart.dk/da/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/#
https://www.codeart.dk/contact/
https://www.codeart.dk/team/allan-thraen/
https://contentservices.io/screenshot/1.0/pdf/?url=https%3A%2F%2Fwww.codeart.dk%2Fblog%2F2018%2F9%2Fgood-ol-dynamic-properties%2F
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/expertise/episerver/

view raw

 var parentprop = (a as IContentData).Property[attr.ParentPropertyToInheritFrom ?? prop.Name];

 if (parentprop!=null && !parentprop.IsNull)

 {

 prop.SetValue(rt, parentprop.Value);

 modified = true;

 break;

 }

 }

 }

 }

 if (modified)

 {

 rt.MakeReadOnly();

 return rt as T;

 }

 return Content;

 }

The attribute presents these options:

 public class InheritAttribute : Attribute

 {

 /// <summary>

 /// Name of Boolean property that indicates if this property should be inherited

 /// </summary>

 public string SwitchPropertyName { get; set; }

 /// <summary>

 /// Inherit this value if it's null

 /// </summary>

 public bool InheritIfNull { get; set; }

 /// <summary>

 /// Inherit this value if it's null or empty

 /// </summary>

 public bool InheritIfNullOrEmpty { get; set; }

 /// <summary>

 /// Name of property on parent content to inherit from. Default is same name.

 /// </summary>

 public string ParentPropertyToInheritFrom { get; set; }

 /// <summary>

 /// Keep searching ancestors until Root

 /// </summary>

 public bool SearchAllAncestors { get; set; }

 }

You can see the entire Gist below.

A word of caution
This is in no way a done solution - in fact, it's a very first draft. I just figured I'd share it here to get some
feedback (which is very welcome in the comments below).

There are still many pieces to the puzzle missing. For example:

What about Blocks? What will they inherit from?

Should we also try to resolve inheritance recursively on parents with inherited properties?

When should we resolve? Currently I resolve inherited properties by calling the method in my

Controller.

How can we alter the UI to make the editor aware that a certain property is begin inherited - and from

where it's being inherited?

InheritAttribute.cs hosted with ❤ by GitHub

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Web;

5

6 namespace AllanTech.Web.PropertyInheritance

7 {

8 public class InheritAttribute : Attribute

9 {

10 /// <summary>

11 /// Name of Boolean property that indicates if this property should be inherited

12 /// </summary>

13 public string SwitchPropertyName { get; set; }

14

15 /// <summary>

16 /// Inherit this value if it's null

17 /// </summary>

18 public bool InheritIfNull { get; set; }

19

20 /// <summary>

21 /// Inherit this value if it's null or empty

22 /// </summary>

23 public bool InheritIfNullOrEmpty { get; set; }

24

25 /// <summary>

26 /// Name of property on parent content to inherit from. Default is same name.

27 /// </summary>

28 public string ParentPropertyToInheritFrom { get; set; }

29

30 /// <summary>

31 /// Keep searching ancestors until Root

32 /// </summary>

33 public bool SearchAllAncestors { get; set; }

34

35 }

36 }

1 using EPiServer.Core;

2 using System;

3 using System.Collections.Generic;

4 using System.Linq;

5 using System.Web;

https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5/raw/562640eb88edba9c97e818ee99cc2b0e685251ef/InheritAttribute.cs
https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5#file-inheritattribute-cs
https://github.com

view rawPropertyInheritor.cs hosted with ❤ by GitHub

6 using AllanTech.Web.Helpers;

7 using EPiServer.ServiceLocation;

8 using EPiServer;

9 using EPiServer.Data.Entity;

10 using System.Reflection;

11

12 namespace AllanTech.Web.PropertyInheritance

13 {

14 public static class PropertyInheritor

15 {

16

17 public static T PopulateInheritedProperties<T>(this T Content) where T : PageData

18 {

19 var rt = (Content as IReadOnly).CreateWritableClone() as PageData;

20 var props = Content.GetPropertiesWithAttribute(typeof(InheritAttribute));

21 bool modified = false;

22 foreach (var prop in props)

23 {

24 var attr = prop.GetCustomAttribute<InheritAttribute>(true);

25

26 if (

27 (!String.IsNullOrEmpty(attr.SwitchPropertyName) && ((bool)Content.GetType().GetProperty(attr.SwitchPropertyName).GetValue(Content))) ||

28 ((attr.InheritIfNull || attr.InheritIfNullOrEmpty) && (prop.GetValue(Content) == null)) ||

29 (attr.InheritIfNullOrEmpty && ((prop.PropertyType == typeof(ContentArea)) && (prop.GetValue(Content) as ContentArea).Count == 0))

30)

31 {

32 //Resolve Inherited Properties

33 var repo = ServiceLocator.Current.GetInstance<IContentRepository>();

34 foreach(var a in repo.GetAncestors(Content.ContentLink).Take((attr.SearchAllAncestors)?1000:1))

35 {

36 var parentprop = (a as IContentData).Property[attr.ParentPropertyToInheritFrom ?? prop.Name];

37 if (parentprop!=null && !parentprop.IsNull)

38 {

39 prop.SetValue(rt, parentprop.Value);

40 modified = true;

41 break;

42 }

43 }

44 }

45 }

46 if (modified)

47 {

48 rt.MakeReadOnly();

49 return rt as T;

50 }

51 return Content;

52

53 }

54

55

56 }

57 }

ADDING GRANULAR EDITOR ACCESS
CONTROL TO BUILT-IN PARTS OF
OPTIMIZELY CMS 12

A classic challenge in Optimizely CMS (well, really in
any system I guess), is to ensure that the right people
have the right access - and that potentially dangerous
actions can't be accidentally done by unqualified
users.

Optimizely (Episerver) .NET Development CMS Tips and Tricks C#

May 30 2025

SCAN FILE UPLOADS FOR MALWARE IN
EPISERVER/OPTIMIZELY CMS 11 -
EPISERVER FORMS

Do you have forms on your website where visitors can
upload files? Perhaps CV's for job applications or
documentation for claims, or other kind of
applications or images? And have you thought about
the risk of these files potentially containing malware
right on your production webserver? A client of mine
has this concern on an EPiServer (now Optimizely)
CMS 11 using the EPiServer Forms extension and I
investigated and found an approach to handle it.

.NET Development Optimizely (Episerver) C# Tips and Tricks

May 9 2025

OPENSOURCE RELEASE: NEW PACKAGE
EXPLORER FOR OPTIMIZELY CMS

The import/export ".episerverdata" packages have
been around as far as I can remember - and even
though they might seem a bit outdated, it's still one of
the most common ways to move content around
today. But it can be quite a hassle to work with. I
recently was inspired to build a tool that will hopefully
make life a bit easier when dealing with the packages

TRACKING UTM PARAMETERS IN
OPTIMIZELY CMS FORMS

When you are spending your marketing dollars on
social media / CPC campaigns, correctly attributing
your leads is everything so you know where to invest
more. Usually you can get this insight from your
Marketing Automation or analytics - but I recently got
a question if it's possible to also automatically add it
to your Optimizely CMS forms. And of course it is. Here

https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5/raw/562640eb88edba9c97e818ee99cc2b0e685251ef/PropertyInheritor.cs
https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5#file-propertyinheritor-cs
https://github.com
https://www.codeart.dk/blog/2025/5/adding-granular-editor-access-control-to-built-in-parts-of-optimizely-cms-12/
https://www.codeart.dk/blog/2025/5/adding-granular-editor-access-control-to-built-in-parts-of-optimizely-cms-12/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/blog/2025/5/scan-file-uploads-for-malware-in-episerveroptimizely-cms-11---episerver-forms/
https://www.codeart.dk/blog/2025/5/scan-file-uploads-for-malware-in-episerveroptimizely-cms-11---episerver-forms/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/blog/2025/4/opensource-release-new-package-explorer-for-optimizely-cms/
https://www.codeart.dk/blog/2025/4/opensource-release-new-package-explorer-for-optimizely-cms/
https://www.codeart.dk/blog/2025/4/tracking-utm-parameters-in-optimizely-cms-forms/
https://www.codeart.dk/blog/2025/4/tracking-utm-parameters-in-optimizely-cms-forms/

across versions.

Vision Demos & Prototypes Addon Development Optimizely (Episerver)

April 9 2025

are two ways of doing that.

Optimizely (Episerver) CMS Website Improvements Tips and Tricks C#

April 3 2025

[SERIES: HEADLESS SITE ON OPTIMIZELY
GRAPH] EXPLORING INTERESTING WAYS
WE CAN QUERY THE CONTENT

Look up in the sky! It's a bird! No, wait - it's Optimizely
Graph! This is part 2 in the blog post series where we
explore how a fully functioning headless site can be
build in .NET core using Optimizely Graph, and in this
post we'll see how Optimizely Graph is both a powerful
search & query engine (on par with good old Episerver
Find) - but also how it can fully replace the content
delivery API.

.NET Development CMS Optimizely (Episerver) Information Retrieval

API Building

August 24 2024

NEW SERIES: BUILDING A .NET CORE
HEADLESS SITE ON OPTIMIZELY GRAPH
AND SAAS CMS

Welcome to this new multi-post series where you can
follow along as I indulge in yet another crazy
experiment: Can we make our beloved Alloy site run as
a headless site on top of Optimizely Graph (and SaaS
CMS) using a mix of both MVC, Razor Pages and Blazor
components - and can we make both the developer
and editor experience as we are used to in classic
Optimizely/Episerver sites? Let's find out!

CMS .NET Development Optimizely (Episerver)

June 14 2024

UPGRADE TO OPTIMIZELY CMS 12 ISSUE:
LIST ITEM FIELDS HAVE BECOME
REQUIRED

There are many funny details to be aware of when
upgrading from Episerver CMS 11 to Optimizely CMS 12.
One of them that might feel a bit confusing is when
your list items start to have all required fields in the
UI. Here's how to fix it.

C# Optimizely (Episerver)

June 7 2024

CHRISTMAS COUNTDOWN: #1 THE GRAND
FINALE. GOING HEADLESS WITHOUT
USING YOUR HEAD!

In 2014 the term 'headless cms' was coined - and
presented as a cool new 'feature' in the Web CMS
industry. And it quickly became a hot buzzword for a
few years later. In a few days it's 2024 and we can
celebrate that it's been a concept for 10 years.
Strangely, I still encounter new implementations that
want to go 'headless' based on an almost religious
belief that it's the new cool thing.

CMS Optimizely (Episerver) Frontend Development Website Improvements

Tech Talk

December 23 2023

CHRISTMAS COUNTDOWN: #2 WE'RE
LIVE! THAT MEANS WE'RE DONE, RIGHT?

They day you go live with your new website is naturally
the culmination of months, sometimes years of work -
and it's fine to celebrate. But #2 on this top 12 list of
common pitfalls is to think that going live is the
completion of the website. It's not. It's the start...

CMS Optimizely (Episerver) Website Improvements Tech Talk

December 22 2023

CHRISTMAS COUNTDOWN: #3 NIHS - NOT
INVENTED HERE SYNDROME IN REAL
LIFE

One of the most common and dreaded diseases in
web site development often go undiagnosed and
untreated for a long time. But it really should be,
cause the effects are scary. Yes, I'm talking about the
Not-Invented-Here Syndrome

.NET Development Optimizely (Episerver) CMS Website Improvements

Tips and Tricks Tech Talk

December 21 2023

https://www.codeart.dk/blog/2025/4/opensource-release-new-package-explorer-for-optimizely-cms/
https://www.codeart.dk/tags2/vision-prototypes/
https://www.codeart.dk/expertise/addons/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2025/4/tracking-utm-parameters-in-optimizely-cms-forms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/blog/2024/8/series-headless-site-on-optimizely-graph-exploring-interesting-ways-we-can-query-the-content/
https://www.codeart.dk/blog/2024/8/series-headless-site-on-optimizely-graph-exploring-interesting-ways-we-can-query-the-content/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/information-retrieval/
https://www.codeart.dk/expertise/api-building/
https://www.codeart.dk/blog/2024/6/new-series-building-a-.net-core-headless-site-on-optimizely-graph-and-saas-cms
https://www.codeart.dk/blog/2024/6/new-series-building-a-.net-core-headless-site-on-optimizely-graph-and-saas-cms
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2024/6/upgrade-to-optimizely-cms-12-issue-list-item-fields-have-become-required/
https://www.codeart.dk/blog/2024/6/upgrade-to-optimizely-cms-12-issue-list-item-fields-have-become-required/
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2023/12/christmas-countdown-1-the-grand-finale.-going-headless-without-using-your-head
https://www.codeart.dk/blog/2023/12/christmas-countdown-1-the-grand-finale.-going-headless-without-using-your-head
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/frontend-development/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-2-were-live-that-means-were-done-right/
https://www.codeart.dk/blog/2023/12/christmas-countdown-2-were-live-that-means-were-done-right/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-3-nihs---not-invented-here-syndrome-in-real-life/
https://www.codeart.dk/blog/2023/12/christmas-countdown-3-nihs---not-invented-here-syndrome-in-real-life/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/
https://www.codeart.dk/blog/2023/12/christmas-countdown-5-sure-our-servers-are-locked-up-tight-in-the-basement/

C# Optimizely (Episerver)

CHRISTMAS COUNTDOWN: #4 EDITORS?
IT'S JUST JOHN AND JANE, THEY KNOW
ALL THE QUIRKS - WHY DOES EDIT-
MODE MATTER?

An audience that is often neglected are the editors /
content creators. That is a shame because happy
editors => efficient editors => good content => great
online experience.

CMS Optimizely (Episerver) Website Improvements Tips and Tricks Tech Talk

December 20 2023

CHRISTMAS COUNTDOWN: #5 SURE, OUR
SERVERS ARE LOCKED UP TIGHT IN THE
BASEMENT!

Securing your website is as important a topic as it is
large and complex. In this post I will not go into too
many details, but highlight a few problems I often see
in Optimizely/EPiServer CMS implementations.

.NET Development CMS Optimizely (Episerver)

December 19 2023

 1 2 3 4 5 6 7 8 9 10 11

CodeArt ApS
Teknikerbyen 5, 2830 Virum, Denmark

Email: info@codeart.dk

Phone: +45 26 13 66 96

CVR: 39680688

 Copyright © 2025

https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/
https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-5-sure-our-servers-are-locked-up-tight-in-the-basement/
https://www.codeart.dk/blog/2023/12/christmas-countdown-5-sure-our-servers-are-locked-up-tight-in-the-basement/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=0
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=0
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=1
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=2
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=3
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=4
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=5
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=6
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=7
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=8
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=9
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=10
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=1
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/expertise/episerver/
https://goo.gl/maps/LBVzoMxFyDB47WMQ7
mailto:info@codeart.dk
tel:+4526136696
https://www.linkedin.com/in/allanthraen/
https://github.com/athraen

