
Azure Optimizely (Episerver)

ALLAN THRAEN | 6 years ago |  PDF |b d

EPISERVER STATIC
WEB SITE GENERATOR

Azure Storage has a new cool feature in preview - Static Website. But what exactly does it do -
and how can I connect my Episerver installation to it? I decided to find out.

Last night, I was starting up a new instance of Azure Storage, and a new feature caught my eye: Static
Website (preview).

Naturally, I couldn't help myself and had to have a closer look. On various occassions I've served both html,
javascript and images directly from Azure storage, and I knew that it's possible to attach your own
domain name to a storage, so what exactly did this feature add in order to have a full static website on
Azure?

So - looks like we're basically getting a properly configured wwwroot to our website (albeit the container
name is $web). That's pretty cool! I guess I haven't been this excited about static websites since 1996 :-)

Now, if only I had a static website to put up there, I definitely would. And there - I ended up in a nostalgia
trip for a brief while, remember how I saved up the money from my newspaper route for a license for MS
FrontPage and built my first round of static website. Remember the <BLINK> tag? Oh well. I digress.

Leaving the nostalgia for a moment, static websites are probably underrated today. Many websites today
are in a sense static - at least to the point where they don't need much server side processing to deal with
their visitors - it's only when it comes to editing and content management that the 'dynamic' part kicks
in.

Now, this got me asking the question I somehow always find myself asking: "Can I connect Episerver to
this" -and as usual of course the answer is 'yes'. In fact, I remember back in CMS 4/5/6 where we had a
mirroring functionality that would in fact mirror your site to static files.

Anyway - I enabled the functionality, connected my own subdomain and set out to connect an Alloy site on
Episerver CMS to Azure Storage Static Websites.

Since this is just a quick prototype, I decided on doing a scheduled job. They are fast and easy to build,
can both be run manually and on a schedule and works like a charm. A slightly better implementation
would of course also list to content events, so it could instantly update the static site whenever an editor
made a change.

I put my connectionstring to Azure storage in my web.config and started coding using the visual studio
template for Scheduled Jobs. First order of business is of course to initialize the connection to the blob
storage:

When you enable static
websites on your storage
account, a new web service
endpoint is created of the
form <account.name>.<zone-
name>.web.core.windows.net.
The web service endpoint
always allows anonymous
read access, returns
formatted HTML pages in
response to service errors,
and allows only object read
operations. The web service
endpoint returns the index
document in the requested
directory for both the root
and all subdirectories. When
the storage service returns a
404 error, the web endpoint
returns a custom error
document if you configured
it.

 G E T I N T O U C HBLOG CASES EXPERTISE ABOUT US CONTACT EN DA g

https://www.codeart.dk/
https://www.codeart.dk/blog/
https://www.codeart.dk/cases/
https://www.codeart.dk/expertise/
https://www.codeart.dk/about/
https://www.codeart.dk/contact/
https://www.codeart.dk/blog/2018/9/episerver-static-web-site-generator/
https://www.codeart.dk/da/
https://www.codeart.dk/blog/2018/9/episerver-static-web-site-generator/#
https://www.codeart.dk/contact/
https://www.codeart.dk/team/allan-thraen/
https://contentservices.io/screenshot/1.0/pdf/?url=https%3A%2F%2Fwww.codeart.dk%2Fblog%2F2018%2F9%2Fepiserver-static-web-site-generator%2F
https://www.codeart.dk/expertise/azure/
https://www.codeart.dk/expertise/episerver/

 //Configure Blog storage

 account = CloudStorageAccount.Parse(WebConfigurationManager.AppSettings["StaticStorage"]);

 container = account.CreateCloudBlobClient().GetContainerReference("$web");

I also wrote a few helper methods - here is the one that gets static versions of the content and uploads it
to storage:

protected int TraverseSite(ContentReference n, string language)

 {

 int cnt = 0;

 var u = UrlResolver.Current.GetUrl(n,language);

 //Url is null if it's not url adressable (for example block or folder)

 if (u != null)

 {

 var uri = new Uri(u);

 var rel = uri.AbsolutePath;

 OnStatusChanged(String.Format("Fetching {0}", rel));

 try

 {

 WebClient wc = new WebClient();

 var data = wc.DownloadData(u);

 var name = rel.TrimStart('/');

 if (name.EndsWith("/")) name = name + DEFAULTFILENAME;

 var blob = container.GetBlockBlobReference(name);

 blob.Properties.ContentType = wc.ResponseHeaders[HttpResponseHeader.ContentType];

 blob.Properties.ContentEncoding = wc.ResponseHeaders[HttpResponseHeader.ContentEncoding];

 blob.Properties.CacheControl = wc.ResponseHeaders[HttpResponseHeader.CacheControl];

 blob.UploadFromByteArray(data, 0, data.Length);

 blob.SetProperties();

 cnt++;

 }

 catch

 {

 //TODO: Log error

 }

 }

 //Get Content Assets recursively

 var l = _assethelper.GetAssetFolder(n);

 if (l != null)

 {

 foreach (var a in _loader.GetDescendents(l.ContentLink))

 {

 cnt += TraverseSite(a,language);

 }

 }

 return cnt;

 }

There are several ways to approach getting generated content. In this case I took the easy way, bound to
work - which is to simply fetch it as an anonymous user using a webclient. That way I didn't have to worry
about access control, publish status and so on. Also, I could simply read the response parameters and set
them against the blob parameters (this is important, as otherwise blobstorage will not serve the html,
instead, just send the html file out as an attachment).

You can see the full code in the GIST below.

Then, all that was left to do was to run the scheduled job.

Obviously, some features won't work. Like the search. And I haven't handled old-style permanent links, so
if there are any that's just a shame. And it might not even be all the useful - I mean - if you're already
running Episerver CMS, why would you want to go static? Well - I think there can be some use-cases,
although they might be more theoretical.

Although I'm not considering license cost, etc. it's worth pointing out that Azure storage costs next to
nothing, is fast, reliable and very easy to configure geo-redundant. Turning on Azure CDN is also a simple
configuration change. Food for thought.

Learn more about the static websites of Azure storage here:
https://azure.microsoft.com/en-us/blog/azure-storage-static-web-hosting-public-preview/

1 using System;

2 using EPiServer.Core;

3 using EPiServer.PlugIn;

4 using EPiServer.Scheduler;

5 using Microsoft.WindowsAzure.Storage;

6 using Microsoft.WindowsAzure.Storage.Blob;

7 using EPiServer;

8 using EPiServer.ServiceLocation;

9 using EPiServer.Web.Routing;

10 using System.Net;

11 using System.Web.Hosting;

12 using System.IO;

13 using System.Web;

14 using System.Collections.Generic;

15 using EPiServer.DataAbstraction;

16 using System.Web.Configuration;

17

18 namespace StaticAlloy.StaticSiteGenerator

19 {

20 [ScheduledPlugIn(DisplayName = "Generate Static Site")]

21 public class StaticGeneratorJob : ScheduledJobBase

22 {

23 public const string DEFAULTFILENAME = "index.html";

24 private bool _stopSignaled;

25

26 /// <summary>

27 /// Called when a user clicks on Stop for a manually started job, or when ASP.NET shuts down.

28 /// </summary>

29 public override void Stop()

30 {

31 _stopSignaled = true;

32 }

33

34 public StaticGeneratorJob(IContentLoader loader, ContentAssetHelper assethelper, ILanguageBranchRepository languagerepo)

35 {

36 _loader = loader;

37 _assethelper = assethelper;

https://azure.microsoft.com/en-us/blog/azure-storage-static-web-hosting-public-preview/

view rawStaticGeneratorJob.cs hosted with ❤ by GitHub

38 _languagerepo = languagerepo;

39 IsStoppable = true;

40 }

41

42 protected CloudStorageAccount account;

43 protected CloudBlobContainer container;

44 protected IContentLoader _loader;

45 protected ContentAssetHelper _assethelper;

46 protected ILanguageBranchRepository _languagerepo;

47

48 protected int TraverseSite(ContentReference n, string language)

49 {

50 int cnt = 0;

51 var u = UrlResolver.Current.GetUrl(n,language);

52 //Url is null if it's not url adressable (for example block or folder)

53 if (u != null)

54 {

55 var uri = new Uri(u);

56 var rel = uri.AbsolutePath;

57 OnStatusChanged(String.Format("Fetching {0}", rel));

58 try

59 {

60 WebClient wc = new WebClient();

61 var data = wc.DownloadData(u);

62 var name = rel.TrimStart('/');

63 if (name.EndsWith("/")) name = name + DEFAULTFILENAME;

64 var blob = container.GetBlockBlobReference(name);

65 blob.Properties.ContentType = wc.ResponseHeaders[HttpResponseHeader.ContentType];

66 blob.Properties.ContentEncoding = wc.ResponseHeaders[HttpResponseHeader.ContentEncoding];

67 blob.Properties.CacheControl = wc.ResponseHeaders[HttpResponseHeader.CacheControl];

68 blob.UploadFromByteArray(data, 0, data.Length);

69 blob.SetProperties();

70 cnt++;

71 }

72 catch

73 {

74 //TODO: Log error

75 }

76 }

77 //Get Content Assets recursively

78 var l = _assethelper.GetAssetFolder(n);

79 if (l != null)

80 {

81 foreach (var a in _loader.GetDescendents(l.ContentLink))

82 {

83 cnt += TraverseSite(a,language);

84 }

85 }

86 return cnt;

87 }

88

89 public static string[] GetFiles(string path, string searchPattern, SearchOption searchOption)

90 {

91 string[] searchPatterns = searchPattern.Split('|');

92 List<string> files = new List<string>();

93 foreach (string sp in searchPatterns)

94 files.AddRange(System.IO.Directory.GetFiles(path, sp, searchOption));

95 files.Sort();

96 return files.ToArray();

97 }

98

99 public int TraverseFiles(string basefolder,string folder, string pattern, bool recursive)

100 {

101 int cnt = 0;

102 foreach(var f in GetFiles(Path.Combine(basefolder,folder), pattern, (recursive)? SearchOption.AllDirectories:SearchOption.TopDirectoryOnly))

103 {

104 string rel = f.Replace(basefolder, "");

105 OnStatusChanged(String.Format("Uploading {0}", rel));

106 var blob=container.GetBlockBlobReference(rel);

107 var mime=MimeMapping.GetMimeMapping(Path.GetFileName(f));

108 blob.Properties.ContentType = mime;

109 blob.UploadFromFile(f);

110 blob.SetProperties();

111 cnt++;

112 }

113 return cnt;

114 }

115

116 /// <summary>

117 /// Called when a scheduled job executes

118 /// </summary>

119 /// <returns>A status message to be stored in the database log and visible from admin mode</returns>

120 public override string Execute()

121 {

122 //Call OnStatusChanged to periodically notify progress of job for manually started jobs

123 OnStatusChanged(String.Format("Starting execution of {0}", this.GetType()));

124

125 //Configure Blog storage

126 account = CloudStorageAccount.Parse(WebConfigurationManager.AppSettings["StaticStorage"]);

127 container = account.CreateCloudBlobClient().GetContainerReference("$web");

128

129 //Traverse content

130 int cnt = 0;

131 foreach (var b in _languagerepo.ListEnabled())

132 {

133 List<ContentReference> lst = new List<ContentReference>();

134 lst.Add(ContentReference.StartPage);

135 lst.AddRange(_loader.GetDescendents(ContentReference.StartPage));

136 lst.Add(ContentReference.SiteBlockFolder);

137 lst.AddRange(_loader.GetDescendents(ContentReference.SiteBlockFolder));

138 foreach (var n in lst)

139 {

140 cnt += TraverseSite(n, b.LanguageID);

141 }

142 }

143 //Traverse static files and folders

144 var rootPath = HostingEnvironment.MapPath("~/");

145 cnt += TraverseFiles(rootPath, "", "*.txt|*.ico", false);

146 cnt += TraverseFiles(rootPath, "Static", "*.css|*.js|*.png|*.gif|*.jpg|*.mp4|*.htm|*.html", true);

147

148 //For long running jobs periodically check if stop is signaled and if so stop execution

149 if (_stopSignaled)

150 {

151 return "Stop of job was called";

152 }

153

154 return string.Format("Moved {0} items to static web site storage",cnt);

155 }

156 }

157 }

https://gist.github.com/AThraen/77b856633ff90489b4c46cd9095e45f7/raw/c1fdcea7bf14bbeed41359076f83bccaad5d955a/StaticGeneratorJob.cs
https://gist.github.com/AThraen/77b856633ff90489b4c46cd9095e45f7#file-staticgeneratorjob-cs
https://github.com

Azure Optimizely (Episerver)

CodeArt ApS
Teknikerbyen 5, 2830 Virum, Denmark

Email: info@codeart.dk

Phone: +45 26 13 66 96

CVR: 39680688

   Copyright © 2025

https://www.codeart.dk/expertise/azure/
https://www.codeart.dk/expertise/episerver/
https://goo.gl/maps/LBVzoMxFyDB47WMQ7
mailto:info@codeart.dk
tel:+4526136696
https://www.linkedin.com/in/allanthraen/
https://github.com/athraen

