Co D E :ART BLOG CASES EXPERTISE ABOUT US CONTACT N

’; ALLAN THRAEN | ® 5 years ago | [3 POF | [E

Integrations Addon Development .NET Development

Optimizely (Episerver)

GIST CONTENT
PROVIDER

Always preferring coding over 'real work' | figured that it would be pretty neat if | could just
drag and drop my gists on GitHub directly into my blog posts here in Episerver in order to
embed them. Naturally, a content provider seemed like the right choice...

Content Providers are awesome! I've had so much fun with them over the years - starting back from when
they were named Page Providers (See for instance this archive post if you are feeling nostalgic - it's from
August 2008: Building your own Page Provider: Northwind).

They can be very powerful when used right - but with great power comes great responsibility and there
are many, many hidden man traps in the content provider jungle. | will touch on a few of them in this blog
post.

If you are new to content providers, | strongly recommend first reading Per Magne's series from 2014,
starting here then part 2 and finally part 3. There are many other good articles on content providers, but |
feel like his is one of the best introductions.

Now, what | had in mind was basically just a folder in my block structure with gist blocks - automatically
fetching them from GitHub. You should then be able to drag them to a content area or a XHTML field and
the gist would get embedded. Simple, right? Read-only, using standard blocks, no versioning, no language
handling, no sophisticated Ul. GitHub is as always a great tool for developers, and of course they have a
REST API for fetching Gists for a user. And it even allows anonymous access, so we don't even have to
worry about OAuth for this call. It's well documented here:
https://developergithub.com/v3/gists/#list-a-users-gists. Basically you can call
https://apigithub.com/users/[username]/gists to get a json list of public Gists. Go ahead and try (you
know you want to).

First thing | did was to make a simple helper class to the Github API - it has a method that basically
fetches the gists and returns them in an IEnumerable. It's pretty straight forward and you can see it
below, in the embedded Gist (and yes, it is embedded using the Gist content provider). | also made a Gist
Block type in Episerver - inheriting from a BlockData like any other block on your site and added a few of
the values available in the Json feed.

But here comes the fun part - time to build the actual provider. Inherit from "ContentProvider" - and we
are ready for some magic.

There will probably not be an unlimited amount of gists for a given user, so | figure they are fairly safe to
load into memory - as opposed to calling GitHub constantly which could slow down everything
significantly.

So | make a method called "GetGists()" which will return them - either from cache, or if they are not in
cache it will load them and add them to cache before returning them. To make things even easier for
myself | load them straight into GistBlocks ready to be returned.

/// <summary>
/// Get Gists from Cache
/// </summary>
/// <returns></returns>
protected List<GistBlock> GetGists()
{
var cache = Servicelocator.Current.GetInstance<ISynchronizedObjectInstanceCache>();
var rt = cache.Get<List<GistBlock>>(KEY, ReadStrategy.Immediate);
if (rt == null)
{

~

rt = LoadGists();
cache.Insert(KEY, rt, new CacheEvictionPolicy(new TimeSpan(@, 30, ©), CacheTimeoutTyp:
}

return rt;

/// <summary>
/// Load Gists from Github and create objects to put in cache
/// </summary>
/// <returns></returns>
private List<GistBlock> LoadGists()
{

~

DN

//Load Gists
var gists = GistHelper.LoadGists(Username);
var _typeRepo = Servicelocator.Current.GetInstance<IContentTypeRepository>();
var _contentFactory = Servicelocator.Current.GetInstance<IContentFactory>();
var _contentRepo = Servicelocator.Current.GetInstance<IContentRepository>();
ContentType type = _typeRepo.Load(typeof(GistBlock));
int i = 1000;
var Gists = new List<GistBlock>(gists.Count());
foreach (var g in gists.OrderBy(g => g.Created))
{
var fc = _contentFactory.CreateContent(type, new EPiServer.Construction.BuildingConte:
{
Parent = _contentRepo.Get<ContentFolder>(EntryPoint)
}) as GistBlock;
fc.Code = g.Id;
(fc as IContent).Name = g.Files.First();
fc.Description = g.Description;

https://www.codeart.dk/
https://www.codeart.dk/blog/
https://www.codeart.dk/cases/
https://www.codeart.dk/expertise/
https://www.codeart.dk/about/
https://www.codeart.dk/contact/
https://www.codeart.dk/blog/2018/9/gist-content-provider/
https://www.codeart.dk/da/
https://www.codeart.dk/blog/2018/9/gist-content-provider/#
https://www.codeart.dk/contact/
https://www.codeart.dk/team/allan-thraen/
https://contentservices.io/screenshot/1.0/pdf/?url=https%3A%2F%2Fwww.codeart.dk%2Fblog%2F2018%2F9%2Fgist-content-provider%2F
https://www.codeart.dk/expertise/integrations/
https://www.codeart.dk/expertise/addons/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/archive/episerver-labs/2008/8/Building-your-own-Page-Provider-Northwind/
https://world.episerver.com/blogs/Per-Magne-Skuseth/Dates/2014/11/content-providers-101--part-i-introduction-initialization-ui--identity-mapping/
https://world.episerver.com/blogs/Per-Magne-Skuseth/Dates/2014/11/content-providers-101--part-ii-from-read-only-to-writable/
https://world.episerver.com/blogs/Per-Magne-Skuseth/Dates/2014/11/content-providers-101--part-iii-finishing-touches/
https://developer.github.com/v3/gists/#list-a-users-gists
https://api.github.com/users/AThraen/gists

fc.HtmlUrl = new Url(g.HtmlUrl);

fc.User = Username;

(fc as IVersionable).Status = VersionStatus.Published;

(fc as IVersionable).IsPendingPublish = false;

(fc as IVersionable).StartPublish = DateTime.Now;

(fc as ILocalizable).Language = CultureInfo.GetCultureInfo("en");
(fc as IContent).ContentLink = new ContentReference(i, this.ProviderKey);
(fc as IContent).ContentGuid = GuidFromId(i);

(fc as IChangeTrackable).Changed = g.Modified;

(fc as IChangeTrackable).CreatedBy = Username;

(fc as IChangeTrackable).Created = g.Created;

(fc as Ilocalizable).MasterLanguage = CultureInfo.InvariantCulture;
(fc as ILocalizable).ExistinglLanguages = new List<CultureInfo>();
fc.MakeReadOnly();

Gists.Add(fc);

i++;

2 I I T R S B T R}

}

return Gists;

4 I i

Here is a little caveat. Depending on what kind of IContent you decide to return from your content
provider, different properties might have to be set - and it can be hard to know which ones are mandatory.
Sometimes a property that you forget to set, results in a hanging Ul or "server is offline" messages.
Remember that IContent can be pages, blocks, media, products, content folders, or any other type you
decide to create that just implements IContent. In my case I'm inheriting a regular block that inherits
BlockData and that comes with both benefits and obligations. Cause blocks are for instance both
versioned and multi-language, so even if your provider is not you still have to take that into account.

For example, forgetting to set MasterLanguage as | did initially will result in a slightly weird and hidden
null-reference exception that took some decompiling of Episerver source code to figure out.

Another, tricky part is ID/Guid/Url resolving. Most of the time Episerver uses ContentReferences to locate
content - and they have an integer ID. But all content should also have a unique Guid which is primarily
used for permanent links - permanent like the ones that are stored when you add a block to a content
area or in a XHTML field. And a content provider is expected to:

a) Be able to know if a Guid or an ID belongs to it's content

b) Be able to map between Guids and IDs.

Urls'is a slightly different story, but not that necessary here as blocks by definition not are url
adressable.

If you forget to handle that mapping you'll see some weird behavior. For instance that you can add your
content to a content area in the Ul, but when you refresh the page or try to publish it will magically
disappear. And it's pretty hard to debug if you don't know about the need to resolve guids and ids.

This is not a new problem. Back in the time of Page Providers | made a 'MappedPageProvider' to solve it. It
would map an external string key to ID's and Guids. These days that problem is now solved by the
IdentityMappingService as Per Magne shows in his posts. But from what | can read in forums the
performance of that is sometimes cause for problems - and | figured, why not avoid it if possible :-)

My solution is to map the 4 bytes an Int32 ID into the first 4 bytes of a 32 byte Guid :-) Maybe not the
prettiest solution in the world, but it works.

public static Guid BASEGUID = new Guid("2900353B-DFFF-4EB8-A9BF-3CE237EFA96F");

public static int IdFromGuid(Guid g)
{
var b = BitConverter.ToInt32(g.ToByteArray().Take(4).ToArray(), @);
return b;

public static bool IsGuidOk(Guid g)
{
var bl = BASEGUID.ToByteArray();
var b2 = g.ToByteArray();
for (int i = 4; i < bl.Length; i++)
if (b1[i] != b2[i]) return false;
return true;

public static Guid GuidFromId(int Id)
{
var bl = BASEGUID.ToByteArray();
var b2 = BitConverter.GetBytes(Id);
for (int i = @; i < b2.Length; i++) b1[i] = b2[i];
return new Guid(bl);

With this in place it's not hard to build the required Resolve methods:

protected override ContentResolveResult ResolveContent(Guid contentGuid)
{
if (!IsGuidOk(contentGuid)) return null; //Not ours
ContentResolveResult crr = new ContentResolveResult();
crr.ContentLink = new ContentReference(IdFromGuid(contentGuid),this.ProviderKey);
var content = LoadContent(crr.ContentLink, null);
crr.UniqueID = contentGuid;
crr.ContentUri = ConstructContentUri(content.ContentTypeID, crr.ContentlLink, crr.UniqueID
return crr;

4 I =

The rest of the content provider itself is pretty straight forward - so I'm not going to dive too deep into
that. The 'important' methods are of course the LoadContent, for loading the actual content, and the
GetChildrenReferencesAndTypes for loading the hierarchy (which is easily done with a flat structure as |
have in this case).

There are many other bits to this circus. Like the initialization that registers the provider - a nice
alternative to doing it in the web.config.

A side note here: | have an idea for a completely new approach to attaching content providers, but that will
have to wait for another blog post.

I've also included a GistBlockController that outputs the needed embedding code as well as a UlDescriptor
that turns off preview/on-page-edit views for the Gists, so | don't have to worry about those for now.

The end result? This is what it looks like:

Media Forms

(Q Search
| Embeds

[Episerver Forms

https://www.codeart.dk/archive/episerver-labs/2009/1/Mapped-Page-Provider/

[1] Generic Headers

M Lo

go

ﬁ Navigation

[Photos

[Pr

omotions

[Sidebar

Bloglnit.cs

Depende

InheritAt

ncyResolverInitialization.cs

tribute.cs

StaticGeneratorJob.cs

(Note that for name, I've picked the first filename - as you can't be certain of a description text that looks

like a name).

This is what it looks like if you open a gist in all properties view:

Name.

X GistBlock.cs Visible to
Languages.

1D, Type

Category

Code

User

Description

Htmiurl

X Add one or more categories

%

17551484c5e2ebd9ce8an

%

AThraen

%

Gist Fetching Block Content Provider for Episerver

X https://gist.github....

1 using

2 usingEPiServer;

3 using EPiServerCore;

4 using EPiServer.DataAbstraction;

5 using EPiServerDataAnnotations;

6 using EPiServerweb;

7

8 AllanTechWeb 8

9 (
10 /] <summary>

T /// Define the Block type to hold the Gist
12/ </summary>

13 [ContentType(DisplayName = "Gist Block", GUID
14 public class GistBlock : BlockData

15 {

16 [Editable(false)]

7 public virtual string Code { get; set;)
8

19 [Editable(false)]
20 public virtual string User { get; set:)
21
22 [Editable(false)]
23 [UIHint(UIHint.Textarea)]
24 public virtual string Description { get; set; }
25
26 [Editable(false)]

27 public virtual Url Htmlurl get; set;)
28)
29)}

GistBlock.cs hosted with ® by GitHub

2 using EPiServerWeb.Mvc;
3

4 AllanTech.Web.

5 (

6 ///<summary>

7 I/ Display the Gist Block

8 ///</summary>

9 publicclass

10 (

n public const string SCRIPTLINE = "<script src=\"https://gist.github.com/(0)/(1).js\"></script>";
12

13 public override

14 (

15 return Ce i LINE, Ut
16)

17)

B)

using System.Web.Mvc;

Everyone Manage

1004, Gist Block

GistBlockController.cs hosted with ® by GitHub

=false)]

view raw

view raw

using EPiServer;

2 using EPiServerConstruction;
3 using EPiServerCore;

4 using EPiServerDataAbstraction;

5 using EPiServerFramework Cache;

6 using EPiServerServiceLocation;

7 using EPiServerWeb;

8 using System;

9 using System Collections Generic;

10 using System.Collections Specialized:
11 using SystemGlobalization;

12 using System.Ling;

13 using System.Web;

14

15 AllanTech.Web.

1.

https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistBlock.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gistblock-cs
https://github.com
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistBlockController.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gistblockcontroller-cs
https://github.com

17 public class GistsContentProvider : ContentProvider

8 (

19 public const string KEY = "GIST;

20

21 public string Username { get; set;}

22

23

24 /IThe following region maps from ID to Guids using the first 4 bytes of each guid to store the Int ID.
25 #region GuidMapping

26 public static Guid BASEGUID = new Guid(%
27

28 public static int IdFromGuid(Guid g)

29 s

30 var b = BitConverter.Tolnt32(g ToByteArray().Take(4) ToArray0), 0);

Ell return b;

32)

33

34 public static bool IsGuidOk(Guid g)

35 s

36 var bl = BASEGUID ToByteArray();

37 var b2 = gToByteArray();

38 for (int i = 4; i < bl.Length; i++)

39 if (1] 1= b2[i]) return false;

40 return true;

4)

a2

43 public static Guid GuidFromid(int Id)

44 {

as var bl = BASEGUID ToByteArray0;

a8 var b2 = BitConverter.GetBytes(id);

47 for (inti = 0; i < b2.Length; i++) bili] = b2li

a8 return new Guid(b1);

49)

50 #endregion

51

52 11/ <summary>

53 /11 Return a gistblock

54 111 </summary>

55 /11 <param name="contentLink"></param>

56 /11 <param name="languageSelector’></param>

57 111 <returns></returns>

58 protected override IContent LoadC contentLink, IL
59 {

60 var gist=GetGists(.Where(gb => (gb as IContent).ContentLink. D(contentLink)).C:)FirstorDefault();
61 return gist;

62)

63

64 /11 <summary>

65 /11 Used to fetch tree structure

66 111 </summary>

67 /11 <param name="contentLink"></param>

68 /11 <param name="languagelD"></param>

69 /11 <param name="languageSpecific’></param>

70 111 <retumns></returns>

7 protected override ILi Loadcl contentLink, string languagelD, out bool languag
72 {

73 languagesSpecific = false;

74 if (contentLink.CompareTolgnoreWorkID(EntryPoint))

75 (

76 /IRoot, list items

77 return GetGists().Select(g => new GetC 0 (ContentLink = (g as IContent) ContentLink, IsLeafNode = true, ModelType = typeof(Gist
78)

79 return base.LoadCl ink, | 1D, out
80)

8

82 111 <summary>

83 /11 Used to resolve Guid, IDs and urls. Needs to work for Gists to remain in content areas.
84 111 </summary>

85 /11 <param name="contentLink"></param>

86 111 <returns></returns>

87 protected override C R tent(C: contentLink)
88 {

89 //Tricky bits

920 if (contentLink.ProviderName != this.ProviderKey) return null; //Not ours

Bl c crr = new € 0;

92 crrContentLink = contentLink;

93 var content = LoadContent(contentLink, null);

94 crrUniquelD = content.ContentGuid;

95 i ContentTypelD, ink, crrUniquelD);
96 return crr;

97)

98

99 protected override C R
100 s

101 if (tsGuidOk(contentGuid)) return null; //Not ours
102 err = new C 0;
103 ink = new C i id),th
104 var content = LoadContent(crr.ContentLink, null);
105 crrUniquelD = contentGuid;
106 tructC ypelD, ink, crrUniquelD);
107 return orr;
108)

109

10 public override void Init name, ion config)
m s

n2 baselnitialize(name, config);

13 if (config['username’] 1= null) Username = config["usernam

4 LoadGists0:

115)

16

n7 /11 <summary>

18 /11 Get Gists from Cache

19 /11 <Isummary>
120 111 <returns></returns>

121 protected List<GistBlock> GetGists()
122 s
123 var cache = Servicel i he>0;
124 Y.
125

126 (

127 rt = LoadGists(;
128 cache.nsert(KEY, rt, new CacheEvictionPolicy(new TimeSpan(0, 30, 0), CacheTimeoutTypeAbsolute));
129)

130 return rt;

131)

132

133 11/ <summary>

134 /11 Load Gists from Github and create objects to put in cache

135 11/ </summary>

136 111 <returns></returns>

137 private List<GistBlock> LoadGists()

138 s

139 //Load Gists

140 var gists = GistHelper.LoadGists(Username);

141 var _typeRepo = Servicel T
142 var _ ry = Servicelc 0;
143 var = Servicel i :
144 ContentType type = _typeRepo.Load(typeof(GistBlock));

145 inti =1000;
146 var Gists = new List<GistBlock>(gists.CountQ);

147 foreach (var g in gists.OrderBy(g => g.Created))
148 (
149 var fc = acto t new EPiServer.C:

150 s

151 Parent = ryPoint

152) as GistBlock;
153 feCode = gid;
154 (fc as IContent).Name = g Files First0;

155 feDescription = gDescription;
156 fe.HtmIUr = new Url(gHtmilurl);

157 fo.User = Username;
158 (fc as IVersionable) Status = VersionStatus.Published;

159 (fc as IVersionable).IsPendingPublish = false;

160 (fc as IVersionable) StartPublish = DateTime.Noy

161 (fc as ILocali Language = Cen’);

162 (fc as IContent).ContentLink = new ContentReference(i, this.ProviderKey):
163 (fc as IContent) ContentGuid = GuidFromId(i);

164 (fc as IChangeTrackable).Changed = gModified;

165 (fc as IChangeTrackable) CreatedBy = Username:

166 (fc as IChangeTrackable) Created = gCreated;

167 (fc as ILocalizable) MasterLanguage = Culturelnfo.nvariantCulture;

168 (fc as ILocali Existinglanguages = new List<C 0

169 feMakeReadOnly(:

170 GistsAdd(fo):

il i+

72)

173 return Gists;

174)

175)

76}

<

GistContentProvider.cs hosted with ® by GitHub

1 using NewtonsoftJson;
using NewtonsoftJsonLing;
using System;

using System.Collections Generic;

using System.Net;

2
3

4

5 using SystemLing;
6

7 using SystemWeb;
8

9

AllanTech Web Bt roviders
10

n 111 <summary>

12 /// Helper class to fetch the gists from github

1B /i </summary>

14 public class GistHelper
15 (
16 public const string APIPath = "https://api.github.com/users/{0}/gists";
7
18 public static IEnumerable<Gist> LoadGists(string Username)
19 (
20 //Load url, create gist objects and return them
21 WebClient we = new WebClient(;
22 we Headers Add(HttpRequestHeaderUserAgent, "Custom");
23 string s = ring(string h,
24 var array = JArray.Parse(s);
25 foreach (var gist in array)
26 (
27 var g = new GistQ);
28 D tion = gist[" 0:
29 gld = gist["id"lvalue<string>(;
30 gHtmIUrl = gistl"html_urlValue<string>0;
31 gCreated = gist["created _at"lValue<DateTime>();
32 gModified = gist['updated_at'lValue<DateTime>(;
33 var files = gist['files"Values(;
34 gFiles = files.Select(j => j["filename"]Value<string>().ToList(;
35 yield return g;
36)
37)
38)
39
40 111 <summary>
@ 111 The Gist as it is returned from Github
42 I/ </summary>
43 public class Gist
44 {
45 public string Id { get; set;)
46 public string Description { get; set;}
a7 public string HtmlUrl { get; set;}
48 public DateTime Created { get; set;}
49 public DateTime Modified { get; set;}
50 public List<string> Files (get; set;}
51)
s2)
GistHelper.cs hosted with @ by GitHub
1 using System;
2 using System.Collections.Specialized;
3 using Systemling;
4 using EPiServer;
5 using EPiServerConfiguration;
6 using EPiServerCore;
7 using EPiServerDataAccess;
8 using EPiServerFrameworl
9 using EPiServerFramework Initialization;
10 using EPiServer.Security;
T using EPiServerServiceLocation;
2
13 AllanTech.Web Bt
o (
15 (initializableModule]
16 p
177 publicclass
8 (
19 public static ContentFolder GetEntryPoint(string name)
20 (
21 var = ServiceLocator.C 0;
22 var folder = Ider, name, L Detect() as
23 if (folder == null)
24 {
25 folder = ontentFolder>
26 folderName = name;

27 Publish, A Level.NoAccess):

view raw

view raw

https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistContentProvider.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gistcontentprovider-cs
https://github.com
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistHelper.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gisthelper-cs
https://github.com

28)

29 return folder;

30 i

31 111 <summary>

32 /11 Alternative to defining in web.config.

33 /11 <Isummary>

34 /11 <param name="context'></param>

35 public void Initialize(initializationEngine context)

36 (

37 var gistprovider = new GistsContentProvider(;

38

39 var provi = new llection(;

40 var entrypoint = GetEntryPoint('Gists").ContentLink;

a provi .Add(C: i & entrypointToString0);
a2 P Add(C i i “None"
43 providerValues.Add("Username”, "AThraen")

a4

as KEY, p

48 var provi = context.Locat

a7 P %
48)

49

50 public void Uninitialize(initializationEngine context)

51 (

52 //Add uninitialization logic

53)

54)

55}

GistProviderInitializer.cs hosted with ® by GitHub

1 using EPiServerShell;
using System;
using System.Collections Generic;

using System.Ling;

AllanTech.Web.B

2
3
4
5 using SystemWeb;
6
7
8
9

(
[UIDescriptorRegistration]

10 public class GistUIDescriptor : UIDescriptor<GistBlock>
n (
2 public GistUIDescriptor() : base('icon-document")
13 (
14 -c
15 this.DisabledViews = new List<string>0;
16 thisDi iews Add(C
7 thi dd(C
8)
)
20)

GistUIDescriptor.cs hosted with @ by GitHub

Integrations Addon Development .NET Development CMS | Optimizely (Episerver)

RECENT POSTS

CodeArt ApS

Teknikerbyen 5, 2830 Virum, Denmark
Email: info@codeart.dk

Phone: +45 26 13 66 96

CVR: 39680688

in O

view raw

view raw

Copyright © 2024

https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistProviderInitializer.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gistproviderinitializer-cs
https://github.com
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae/raw/e5f43b8c98bf3606ed48987eac07e2445cae2c7a/GistUIDescriptor.cs
https://gist.github.com/AThraen/17551484c5e2ebd9ce8aa6fcf9a4aaae#file-gistuidescriptor-cs
https://github.com
https://www.codeart.dk/expertise/integrations/
https://www.codeart.dk/expertise/addons/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://goo.gl/maps/LBVzoMxFyDB47WMQ7
mailto:info@codeart.dk
tel:+4526136696
https://www.linkedin.com/in/allanthraen/
https://github.com/athraen

