
C# Optimizely (Episerver)

ALLAN THRAEN | 5 years ago | PDF |b d

GOOD OL' DYNAMIC
PROPERTIES

There was a time, when men were made of steel, ships made of wood, Episerver was spelled
with a weird capitalization and the CMS had something called Dynamic Properties that was
usually misused. They've been gone for a while, but I miss them, so here's yet another attempt
at solving the property inheritance challenge.

To those of you, my dear readers, that have no clue what Dynamic Properties were all about, let me begin
with enlightening you:

Once upon a time, there was a mythical feature, loved by some and hated by many called Dynamic
Propeties. Dynamic Properties were properties that were not set on the content itself, but rather could be
inherited across all content types, throughout the content hierachy. A good example would be a dynamic
property called something like "SecondLevelMenuRoot" that would be used to know which child objects
should be listed in the sidebar menu. Usually, a super-user editor that could find his/her way into the
secret edit menu for dynamic properties would then set the property to the each of the first level items.
That way, the property would inherit down and all leaf nodes would show the second level menu
corresponding to their place. And the world was a better place.

Sadly, evil forced tended to abuse these great powers and often ended up making many, many dynamic
properties and use them for stuff like a LogoImageLink or SearchButtonText that really should have been
a site setting instead. Since Dynamic properties had to be resolved dynamically (hence the name) that
tended to slow down the sites quite a bit.

But, surely we are smarter now and ready to once again unleash this power, right?

In any case, I needed some inheritance badly when building this blog. Why?

Well, here is a good use-case: On each blog post I have a sidebar content area. Usually I'll have the same
blocks there on all blocks - but there'll probably one or two where I'll want something different placed
there. I don't want to have to remember to put the same blocks in there for every single blog post. And I
don't want it as 'Default' value upon creation, cause what happens when I decide to change the blocks?

I could perhaps make 1 giant Block to rule all blocks, that would contain another content area with the
other blocks....But blocks-in-blocks are kind of ugly in my eyes and should be avoided whenever possible
(yes I know, I've done blocks in blocks both with Forms and Self Optimizing Block - but those were
exceptions, ok).

Enough talk, let's see some code. I decided that one of the best approaches would be if we could let the
developers decide which properties should be inherited and how it should work. Something like this:

//Sidebar

[Inherit(InheritIfNullOrEmpty =true, ParentPropertyToInheritFrom ="DefaultChildSideBar", SearchAllAncestors =true)

public virtual ContentArea SideBar { get; set; }

What's happening here is basically just that on my Blog Post content type, I'm telling it that this property
value should be inherited, if it's not set (null or empty). It should try to inherit from the parent page, if the
parent page has a property called "DefaultChildSideBar". If I hadn't specified that, it would simply look for
a parent property of the same name as the current property. I also tell it to search all ancestors - so if the
parent doesn't have that property set, it should look to the grandparent and so on.

Sometimes you might like to let the editor decide if a value should be inherited or not - in that case, you
could add another boolean property on the page and specify it's name as "SwitchPropertyName" in the
attribute.

I haven't yet decided on a good strategy for when to populate the properties - so for now, I've let it be up to
the developers - they basically have to call an extension method on IContent that will attempt to populate
the needed inherited properties.

public static T PopulateInheritedProperties<T>(this T Content) where T : PageData

 {

 var rt = (Content as IReadOnly).CreateWritableClone() as PageData;

 var props = Content.GetPropertiesWithAttribute(typeof(InheritAttribute));

 bool modified = false;

 foreach (var prop in props)

 {

 var attr = prop.GetCustomAttribute<InheritAttribute>(true);

 if (

 (!String.IsNullOrEmpty(attr.SwitchPropertyName) && ((bool)Content.GetType().GetProperty(attr.SwitchPropertyName).GetValue(Content))) ||

 ((attr.InheritIfNull || attr.InheritIfNullOrEmpty) && (prop.GetValue(Content) == null

 (attr.InheritIfNullOrEmpty && ((prop.PropertyType == typeof(ContentArea)) && (prop.GetValue(Content)

)

 {

 //Resolve Inherited Properties

 var repo = ServiceLocator.Current.GetInstance<IContentRepository>();

 foreach(var a in repo.GetAncestors(Content.ContentLink).Take((attr.SearchAllAncestors)?

 {

 var parentprop = (a as IContentData).Property[attr.ParentPropertyToInheritFrom ?? prop.Name];

 if (parentprop!=null && !parentprop.IsNull)

 {

 G E T I N T O U C HBLOG CASES EXPERTISE ABOUT US CONTACT EN DA g

https://www.codeart.dk/
https://www.codeart.dk/blog/
https://www.codeart.dk/cases/
https://www.codeart.dk/expertise/
https://www.codeart.dk/about/
https://www.codeart.dk/contact/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/
https://www.codeart.dk/da/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/#
https://www.codeart.dk/contact/
https://www.codeart.dk/team/allan-thraen/
https://contentservices.io/screenshot/1.0/pdf/?url=https%3A%2F%2Fwww.codeart.dk%2Fblog%2F2018%2F9%2Fgood-ol-dynamic-properties%2F
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/expertise/episerver/

view raw

 prop.SetValue(rt, parentprop.Value);

 modified = true;

 break;

 }

 }

 }

 }

 if (modified)

 {

 rt.MakeReadOnly();

 return rt as T;

 }

 return Content;

 }

The attribute presents these options:

 public class InheritAttribute : Attribute

 {

 /// <summary>

 /// Name of Boolean property that indicates if this property should be inherited

 /// </summary>

 public string SwitchPropertyName { get; set; }

 /// <summary>

 /// Inherit this value if it's null

 /// </summary>

 public bool InheritIfNull { get; set; }

 /// <summary>

 /// Inherit this value if it's null or empty

 /// </summary>

 public bool InheritIfNullOrEmpty { get; set; }

 /// <summary>

 /// Name of property on parent content to inherit from. Default is same name.

 /// </summary>

 public string ParentPropertyToInheritFrom { get; set; }

 /// <summary>

 /// Keep searching ancestors until Root

 /// </summary>

 public bool SearchAllAncestors { get; set; }

 }

You can see the entire Gist below.

A word of caution
This is in no way a done solution - in fact, it's a very first draft. I just figured I'd share it here to get some
feedback (which is very welcome in the comments below).

There are still many pieces to the puzzle missing. For example:

What about Blocks? What will they inherit from?

Should we also try to resolve inheritance recursively on parents with inherited properties?

When should we resolve? Currently I resolve inherited properties by calling the method in my

Controller.

How can we alter the UI to make the editor aware that a certain property is begin inherited - and from

where it's being inherited?

InheritAttribute.cs hosted with ❤ by GitHub

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Web;

5

6 namespace AllanTech.Web.PropertyInheritance

7 {

8 public class InheritAttribute : Attribute

9 {

10 /// <summary>

11 /// Name of Boolean property that indicates if this property should be inherited

12 /// </summary>

13 public string SwitchPropertyName { get; set; }

14

15 /// <summary>

16 /// Inherit this value if it's null

17 /// </summary>

18 public bool InheritIfNull { get; set; }

19

20 /// <summary>

21 /// Inherit this value if it's null or empty

22 /// </summary>

23 public bool InheritIfNullOrEmpty { get; set; }

24

25 /// <summary>

26 /// Name of property on parent content to inherit from. Default is same name.

27 /// </summary>

28 public string ParentPropertyToInheritFrom { get; set; }

29

30 /// <summary>

31 /// Keep searching ancestors until Root

32 /// </summary>

33 public bool SearchAllAncestors { get; set; }

34

35 }

36 }

1 using EPiServer.Core;

2 using System;

3 using System.Collections.Generic;

4 using System.Linq;

5 using System.Web;

6 using AllanTech.Web.Helpers;

7 using EPiServer.ServiceLocation;

8 using EPiServer;

https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5/raw/562640eb88edba9c97e818ee99cc2b0e685251ef/InheritAttribute.cs
https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5#file-inheritattribute-cs
https://github.com

view rawPropertyInheritor.cs hosted with ❤ by GitHub

9 using EPiServer.Data.Entity;

10 using System.Reflection;

11

12 namespace AllanTech.Web.PropertyInheritance

13 {

14 public static class PropertyInheritor

15 {

16

17 public static T PopulateInheritedProperties<T>(this T Content) where T : PageData

18 {

19 var rt = (Content as IReadOnly).CreateWritableClone() as PageData;

20 var props = Content.GetPropertiesWithAttribute(typeof(InheritAttribute));

21 bool modified = false;

22 foreach (var prop in props)

23 {

24 var attr = prop.GetCustomAttribute<InheritAttribute>(true);

25

26 if (

27 (!String.IsNullOrEmpty(attr.SwitchPropertyName) && ((bool)Content.GetType().GetProperty(attr.SwitchPropertyName).GetValue(Content))) ||

28 ((attr.InheritIfNull || attr.InheritIfNullOrEmpty) && (prop.GetValue(Content) == null)) ||

29 (attr.InheritIfNullOrEmpty && ((prop.PropertyType == typeof(ContentArea)) && (prop.GetValue(Content) as ContentArea).Count == 0))

30)

31 {

32 //Resolve Inherited Properties

33 var repo = ServiceLocator.Current.GetInstance<IContentRepository>();

34 foreach(var a in repo.GetAncestors(Content.ContentLink).Take((attr.SearchAllAncestors)?1000:1))

35 {

36 var parentprop = (a as IContentData).Property[attr.ParentPropertyToInheritFrom ?? prop.Name];

37 if (parentprop!=null && !parentprop.IsNull)

38 {

39 prop.SetValue(rt, parentprop.Value);

40 modified = true;

41 break;

42 }

43 }

44 }

45 }

46 if (modified)

47 {

48 rt.MakeReadOnly();

49 return rt as T;

50 }

51 return Content;

52

53 }

54

55

56 }

57 }

CHRISTMAS COUNTDOWN: #1 THE GRAND
FINALE. GOING HEADLESS WITHOUT
USING YOUR HEAD!

In 2014 the term 'headless cms' was coined - and
presented as a cool new 'feature' in the Web CMS
industry. And it quickly became a hot buzzword for a
few years later. In a few days it's 2024 and we can
celebrate that it's been a concept for 10 years.
Strangely, I still encounter new implementations that
want to go 'headless' based on an almost religious
belief that it's the new cool thing.

CMS Optimizely (Episerver) Frontend Development Website Improvements

Tech Talk

December 23 2023

CHRISTMAS COUNTDOWN: #2 WE'RE
LIVE! THAT MEANS WE'RE DONE, RIGHT?

They day you go live with your new website is naturally
the culmination of months, sometimes years of work -
and it's fine to celebrate. But #2 on this top 12 list of
common pitfalls is to think that going live is the
completion of the website. It's not. It's the start...

CMS Optimizely (Episerver) Website Improvements Tech Talk

December 22 2023

https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5/raw/562640eb88edba9c97e818ee99cc2b0e685251ef/PropertyInheritor.cs
https://gist.github.com/AThraen/36441242d94c4a1e236bfa4c9f6dbbd5#file-propertyinheritor-cs
https://github.com
https://www.codeart.dk/blog/2023/12/christmas-countdown-1-the-grand-finale.-going-headless-without-using-your-head
https://www.codeart.dk/blog/2023/12/christmas-countdown-1-the-grand-finale.-going-headless-without-using-your-head
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/frontend-development/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-2-were-live-that-means-were-done-right/
https://www.codeart.dk/blog/2023/12/christmas-countdown-2-were-live-that-means-were-done-right/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-3-nihs---not-invented-here-syndrome-in-real-life/
https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/

CHRISTMAS COUNTDOWN: #3 NIHS - NOT
INVENTED HERE SYNDROME IN REAL
LIFE

One of the most common and dreaded diseases in
web site development often go undiagnosed and
untreated for a long time. But it really should be,
cause the effects are scary. Yes, I'm talking about the
Not-Invented-Here Syndrome

.NET Development Optimizely (Episerver) CMS Website Improvements

Tips and Tricks Tech Talk

December 21 2023

CHRISTMAS COUNTDOWN: #4 EDITORS?
IT'S JUST JOHN AND JANE, THEY KNOW
ALL THE QUIRKS - WHY DOES EDIT-
MODE MATTER?

An audience that is often neglected are the editors /
content creators. That is a shame because happy
editors => efficient editors => good content => great
online experience.

CMS Optimizely (Episerver) Website Improvements Tips and Tricks Tech Talk

December 20 2023

CHRISTMAS COUNTDOWN: #5 SURE, OUR
SERVERS ARE LOCKED UP TIGHT IN THE
BASEMENT!

Securing your website is as important a topic as it is
large and complex. In this post I will not go into too
many details, but highlight a few problems I often see
in Optimizely/EPiServer CMS implementations.

.NET Development CMS Optimizely (Episerver)

December 19 2023

CHRISTMAS COUNTDOWN: #6 "WE LOVE
CONTENT MODELS - WE HAVE _ALL_ OF
THEM!"

The above statement is almost as scary as this:
"Content Modelling - is that really needed? We just
have one!"

CMS Optimizely (Episerver) Website Improvements Tips and Tricks Tech Talk

December 18 2023

CHRISTMAS COUNTDOWN: #7 DDOS?
WHAT'S THAT? WHAT DO YOU MEAN
'PREPARED'?

Is your website ready to handle intense usage
scenarios like DDoS attacks or black friday? Many
people think that testing performance is the same as
testing for load - but it's not and sometimes it might
even work against each other.

.NET Development CMS Optimizely (Episerver) Website Improvements

Tips and Tricks Tech Talk

December 17 2023

CHRISTMAS COUNTDOWN: #8 CODE
MAINTENANCE IS 90% OF THE WORK

Greenfield development is by far the most fun for
everybody. So it's easy to forget that most
development work is actually maintenance. And every
new line of code you write means more code to
maintain. Almost all codebases I review have
significant technical debt. And the debt starts to
accumulate from the moment you start coding.

.NET Development Optimizely (Episerver) CMS Website Improvements

Tips and Tricks Tech Talk

December 16 2023

https://www.codeart.dk/blog/2023/12/christmas-countdown-3-nihs---not-invented-here-syndrome-in-real-life/
https://www.codeart.dk/blog/2023/12/christmas-countdown-3-nihs---not-invented-here-syndrome-in-real-life/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/
https://www.codeart.dk/blog/2023/12/christmas-countdown-4-editors-its-just-john-and-jane-they-know-all-the-quirks---why-does-edit-mode-matter/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-5-sure-our-servers-are-locked-up-tight-in-the-basement/
https://www.codeart.dk/blog/2023/12/christmas-countdown-5-sure-our-servers-are-locked-up-tight-in-the-basement/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2023/12/christmas-countdown-6-we-love-content-models---we-have-_all_-of-them/
https://www.codeart.dk/blog/2023/12/christmas-countdown-6-we-love-content-models---we-have-_all_-of-them/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-7-ddos-whats-that-what-do-you-mean-prepared/
https://www.codeart.dk/blog/2023/12/christmas-countdown-7-ddos-whats-that-what-do-you-mean-prepared/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-8-code-maintenance-is-90-of-the-work/
https://www.codeart.dk/blog/2023/12/christmas-countdown-8-code-maintenance-is-90-of-the-work/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/blog/2023/12/christmas-countdown-9-what-viewmodels-nah-we-dont-need-those/
https://www.codeart.dk/blog/2023/12/christmas-countdown-10-if-its-out-there-google-will-eventually-find-it/

C# Optimizely (Episerver)

R E C E N T P O S T S

CHRISTMAS COUNTDOWN: #9 WHAT?
VIEWMODELS? NAH, WE DON'T NEED
THOSE

This is another classic - with a big impact! Since
recycling is great, why don't we just reuse the content
model as a view model? We can just enrich it in the
controller, right?

Tech Talk C# Tips and Tricks Optimizely (Episerver) CMS .NET Development

December 15 2023

CHRISTMAS COUNTDOWN: #10 IF IT'S
OUT THERE, GOOGLE WILL EVENTUALLY
FIND IT

Have you ever forgotten to protect stuff that wasn't
meant to be public? If no, then you are probably a
better person than me and most others - both
developers and editors alike.

Tech Talk Tips and Tricks Website Improvements Optimizely (Episerver) CMS

December 14 2023

CHRISTMAS COUNTDOWN: #11
DEPENDENCY INJECTION IS NOT AS EASY
AS IT SEEMS

Dependency Injection is an extremely useful pattern. It
has been used with EPiServer CMS for years - and with
.NET Core it has truly become the go-to method of
coupling your business logic together. However, once
you start having services depend on other services
their lifetimes can give some unexpected difficulties.

Tech Talk Tips and Tricks .NET Development Optimizely (Episerver) CMS

December 13 2023

CHRISTMAS COUNTDOWN: COMMON
OPTIMIZELY CMS PITFALLS - #12 PICKING
THE RIGHT ADD-ONS

12 days to Christmas and here is my countdown list of
the top 12 common pitfalls I see in Optimizely CMS
implementations - along with some tips on how to
avoid them. Today we'll take a look at #12 on the list:
Picking the right add-ons

Tech Talk Tips and Tricks CMS Website Improvements Optimizely (Episerver)

December 12 2023

 1 2 3 4 5 6 7 8 9 10

CodeArt ApS
Teknikerbyen 5, 2830 Virum, Denmark

Email: info@codeart.dk

Phone: +45 26 13 66 96

CVR: 39680688

 Copyright © 2024

https://www.codeart.dk/blog/2023/12/christmas-countdown-9-what-viewmodels-nah-we-dont-need-those/
https://www.codeart.dk/blog/2023/12/christmas-countdown-9-what-viewmodels-nah-we-dont-need-those/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/blog/2023/12/christmas-countdown-10-if-its-out-there-google-will-eventually-find-it/
https://www.codeart.dk/blog/2023/12/christmas-countdown-10-if-its-out-there-google-will-eventually-find-it/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/blog/2023/12/christmas-countdown-11-dependency-injection-is-not-as-easy-as-it-seems/
https://www.codeart.dk/blog/2023/12/christmas-countdown-11-dependency-injection-is-not-as-easy-as-it-seems/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/expertise/.net
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/blog/2023/12/christmas-countdown-12-days-and-12-common-optimizely-cms-pitfalls---12---picking-the-right-add-ons/
https://www.codeart.dk/blog/2023/12/christmas-countdown-12-days-and-12-common-optimizely-cms-pitfalls---12---picking-the-right-add-ons/
https://www.codeart.dk/tags2/tech-talk/
https://www.codeart.dk/tags2/tips-and-tricks/
https://www.codeart.dk/expertise/cms/
https://www.codeart.dk/expertise/website-improvements/
https://www.codeart.dk/expertise/episerver/
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=0
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=0
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=1
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=2
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=3
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=4
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=5
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=6
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=7
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=8
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=9
https://www.codeart.dk/blog/2018/9/good-ol-dynamic-properties/?page=1
https://www.codeart.dk/tags2/c/
https://www.codeart.dk/expertise/episerver/
https://goo.gl/maps/LBVzoMxFyDB47WMQ7
mailto:info@codeart.dk
tel:+4526136696
https://www.linkedin.com/in/allanthraen/
https://github.com/athraen

